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Open-Source Software Won't Ensure Election Security

By Matt Bishop Thursday, August 24, 2017, 2:00 PM

DayZero: Cybersecurity Law and Policy

The technology behind elections is hard to get right. Elections require security. They also require transparency: anyone should be able to
observe enough of the election process, from distribution of ballots, to the counting and canvassing of votes, to verify that the reported
winners really won. But if people vote on computers or votes are tallied by computers, key steps of the election are not transparent and
additional measures are needed to confirm the results.

In a New York Times op-ed a couple weeks ago, James Woolsey and Brian Fox proposed using "open-source systems that can guard our votes
against manipulation." Their hypothesis is that "open-source software is less vulnerable to hacking" than proprietary voting software
because "anyone can see how open-source systems operate. Bugs can be spotted and remedied, deterring those who would attempt attacks.
This makes them much more secure than closed-source models." This sounds reasonable, but in fact, open-source systems are only one step
towards guarding our votes against manipulation—and the hypothesis that using open source software will by itself improve security is
questionable at best.

First, with the systems in use today, there is no guarantee that the software running on any machine is in fact the software it is supposed to
be running, open source or not. And even if we could know with certainty that the installed software matches the software source, the
quality of the software is critical. Poorly written software, whether open source or not, creates vulnerabilities, and is thus vulnerable to
hacking. Open source software allows anyone to detect vulnerabilities. We do not believe in "security through obscurity"—that is, relying on
secrecy as a primary security strategy—but making source code available to everyone for inspection makes it available to the attackers for
inspection. And the attackers are often highly motivated to find vulnerabilities.

Complicating this is the relative ease of identifying one vulnerability and the difficulty of finding them all. Attackers need to find just a
single flaw in order to exploit a system. On the other hand, it is very easy for reviewers to miss something—the Heartbleed bug that affected
millions of websites and devices in 2014 occurred in open source software—or to make assumptions about the environment in which the
source code is executed that turn out to be wrong. Software authors, maintainers, election officials, and other defenders must find every flaw,
fix them all, and then distribute the fixed system (or patches) to everyone using the system.

Patch distribution creates its own set of potential problems, as it informs attackers that there was a vulnerability (and where in the code it
is), leaving anyone who does not immediately install the patch especially vulnerable. For example, many years ago, a response group
announced a patch to a well-known, widely used piece of software. Within thirty minutes, that vulnerability was being exploited around the
world. Many sites did not have the time or resources to install the fix. The patch was announced at 5 p.m. East Coast time on a Friday,
making things worse.

Open source software is a good thing. Published source, a lower bar, is a useful if less optimal alternative. But visibility of the source is not
enough. Security analysts need access to everything that is used to create the system, including operating system source, driver source,
compiler source, hardware, and hardware fabrication information, and then directions on how to create the systems used in the voting (such
as the voting system, the tally system, and any systems and software used to display the results). Even that isn't enough, as (for example) the
fabrication facilities may not follow the directions the analysts are given. The supply chain matters, too—manufacturers or their employees
may even be malicious! So the analysts need to monitor the actual system construction to verify everything. Even then, they must be aware
that what is done today may not be what is done tomorrow, or what was done yesterday.

Finally, even perfect software does not guarantee trustworthy elections. Trustworthiness is also a product of the way the system, and
software, are used. For example, consider a system that uses a difficult-to-guess password, but that password can be found on a website. No
amount of scrutiny of the system will reveal this flaw.

So assuming that open source systems are more secure than other systems is a dangerous fallacy, just as assuming closed source systems are
more secure than other systems. Properly evaluating security requires more than simply considering the openness of the source.

The question we should be asking is "how can we ensure that election results are accurate when we cannot trust the computers used to run
elections?" rather than "how do we make electronic voting secure?” Nothing is ever absolutely secure. But we can often make computers,
systems, and processes "secure enough" for their tasks, provided we have an independent way to check the results. One technique is to



produce a voter-verified paper trail, ensure that the paper trail is trustworthy, and manually audit the electronically tabulated results against
the paper audit trail. Another technique called "end-to-end verifiability" allows individual voters to verify that their vote was recorded and
counted correctly. Simply enabling everyone to examine the source is not sufficient, and could even give voters and election officials a belief
that the system is secure when it is not.

We believe there are excellent reasons to move to open-source voting systems. For instance, there are good arguments that the public
should own the voting system. Open-source systems allow vendor claims about software to be verified. Open-source systems running on
commercial, off-the-shelf (COTS) hardware could be far cheaper to acquire and maintain than proprietary voting systems. Adopting open-
source systems could promote a competitive market for technical support for local election officials, also decreasing costs. Open-source
systems could be designed to facilitate auditing against the paper trail more efficiently than commercial systems permit. And using open-
source systems would make it possible for jurisdictions to customize the software to their needs.

All this needs to be considered as we work to improve the security and transparency of our election systems. But adopting open-source
systems would not by itself provide any assurance that computers used in voting are doing what they are supposed to do. Nor would it
obviate the need to audit the results.
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