
September	19,	2017	
	
From:		 Chris	Jerdonek,	OSVTAC	Chair	
	
To:		 Open	Source	Voting	System	Technical	Advisory	Committee	(OSVTAC)	
	
RE:	 Agenda	Item	#9	–	Proposed	text	re:	Incremental	Approaches	
	
	
5.	Recommendations	
	
5.1	Interim	Voting	System	
	
…	
	
5.2	Incremental	Approach	
	
To	reduce	project	risk,	complexity,	and	initial	costs,	it	is	important	to	have	a	strategy	to	break	
the	open	source	voting	system	project	up	into	smaller,	independent	deliverables	that	can	be	
developed	and	used	in	real	elections	before	the	full	system	is	completed.	
	
This	is	part	of	an	agile	approach	and	has	several	advantages.	It	would	let	the	City	start	getting	
real	value	from	the	project	earlier.	It	would	let	the	City	get	confirmation	earlier	that	the	project	
is	“on	the	right	track”	without	necessarily	having	to	commit	funds	for	the	entire	project.	It	also	
builds	in	a	way	for	the	City	to	take	corrective	action	(e.g.	if	a	vendor	developing	a	particular	
component	isn’t	performing	to	expectation).	Finally,	it	eliminates	the	need	to	come	up	with	an	
accurate	estimate	for	the	entire	project	before	starting	work.	
	
For	example,	instead	of	committing	$8	million	up	front	for	a	single	project	to	develop	a	full	
voting	system,	the	City	could	instead	start	out	by	spending	$2	million	on	three	deliverables:	one	
for	$1.5	million	and	two	for	$250,000.	Based	on	the	success	or	progress	of	the	initial	projects,	
the	City	could	decide	to	move	forward	with	additional	sub-projects,	or	change	its	approach	
(even	before	the	three	deliverables	are	completed).	In	this	way,	the	City	limits	its	financial	
exposure	to	risk.	
	
This	section	recommends	some	approaches	to	achieve	this.	The	purpose	of	this	section	is	not	to	
serve	as	an	actual	plan,	but	rather	to	provide	concrete	suggestions	for	how	the	Department	can	
proceed	incrementally	in	developing	and	deploying	an	open	source	voting	system.	
	
5.2.1.	Possible	First	Components	
	
The	Committee	suggests	the	following	as	components	to	start	work	on	and	deliver	first	(see	the	
“Voting	System”	section	for	brief	descriptions	of	these	components):	
	

1. Results	Reporter	(Software)	
2. Vote	Totaler	(Software)	
3. Ballot	Image	Interpreter	(Software)	
4. Central	Ballot	Scanner	(Hardware	&	Software)	

	
These	components	can	be	developed	in	parallel.	Their	development	can	also	be	staggered	in	
conjunction	with	other	deliverables.	For	example,	development	on	other	components	can	be	
started	before	these	are	finished.	
	
5.2.1.1.	Deployment	Strategy	
	
The	components	above	could	be	deployed	and	used	in	conjunction	with	a	non-open-source	
interim	system.	For	example,	the	results	reporter	could	be	used	to	report	the	election	results	of	
the	interim	system.	The	vote	totaler	could	be	used	to	compute	the	results	of	an	election	run	
with	the	interim	system.	
	
There	are	a	number	of	possibilities	for	an	open-source	central	ballot	scanner	to	be	used	in	
conjunction	with	a	non-open-source	interim	system.	For	example—	
	

1. Open-source	central	ballots	scanners	could	be	responsible	for	scanning	all	vote-by-mail	
ballots,	while	the	interim	system	could	be	responsible	for	counting	in-precinct	ballots.	In	
addition,	the	interim	system	could	even	be	used	as	a	fail-safe	backup	in	the	first	use	in	
case	of	an	unexpected	issue	in	the	open-source	system.	

2. Before	(1),	open-source	scanners	could	be	responsible	for	scanning	some	of	the	vote-by-
mail	ballots	(e.g.	in	a	pilot	of	the	open-source	scanners	that	precedes	a	full-scale	
rollout).	This	option	could	possibly	be	done	prior	to	certifying	the	scanners,	by	taking	
advantage	of	California	bill	SB	360	(2013-2014)	[add	link].	

3. Finally,	before	(2),	open-source	scanners	could	be	used	to	scan	vote-by-mail	ballots	in	
addition	to	the	interim	system	scanning	them.	This	could	be	used	both	to	check	or	audit	
the	interim	system,	as	well	as	test	the	open-source	scanners.	This	final	option	can	likely	
even	be	done	prior	to	certifying	the	scanners.	

	
5.2.1.2.	Rationale	
	
Below	are	some	reasons	for	selecting	the	components	above:	
	

• Each	component	has	relatively	few	dependencies.	
• The	components	are	on	the	easier	side	to	implement.	
• The	components	are	independently	useful	and	so	can	help	prove	the	value	of	open	

source.	
• The	components	can	be	worked	on	in	parallel.	
• The	components	support	incremental	deployment.	Each	component	can	be	deployed	

and	used	in	conjunction	with	a	non-open-source	interim	system	relatively	easily:	

replacing	individual	components	of	an	interim	system	and	working	in	conjunction	with	
other	components	of	the	interim	system	via	import	and	export	processes.		

• In	each	case,	there	is	open-source	code	that	already	exists	that	development	of	the	
components	might	be	able	to	start	from,	or	at	least	learn	from.	

• Working	on	the	components	will	help	to	work	through	and	resolve	core	issues	that	need	
to	be	worked	out	anyways	

	
For	the	Results	Reporter:	
	

• The	results	reporter	is	probably	the	“easiest”	component	to	implement	and	has	the	
least	amount	of	risk,	since	it	is	responsible	merely	for	formatting	and	presenting	
information.	In	this	way,	it	would	be	a	good	warm-up	project.	

• Since	many	members	of	the	public	view	the	Department’s	election	results	pages	online,	
it	would	nevertheless	be	a	highly	visible	use	of	open-source	software.	

• It	could	also	be	a	good	public	outreach	/	educational	tool	around	open	source	and	the	
open	source	voting	project.	The	Department	could	solicit	feedback	from	the	public	on	
how	the	results	pages	could	look	or	be	improved,	and	the	Department	could	implement	
the	best	suggestions	(since	the	reporter	would	be	open	source).	

• Making	the	reporter	open-source	would	also	be	inherently	useful	because	it	would	give	
the	Department	the	ability	to	customize	and	improve	the	current	format,	and	accept	
contributions	from	the	public.	

		
For	the	Vote	Totaler:	
	

• This	component	is	also	one	of	the	easiest	components	and	so	would	be	good	to	start	
with.	

• This	is	also	a	component	that	other	jurisdictions	would	be	able	to	use	and	benefit	from	
relatively	easily	(e.g.	jurisdictions	using	RCV	would	be	able	to	use	the	RCV	algorithm	
functionality).	In	this	way,	other	jurisdictions	could	start	to	understand	the	benefits	of	
open	source.	

	
For	the	Ballot	Image	Interpreter:	
	

• This	is	a	core	software	component	that	would	be	used	in	a	number	of	different	
components,	so	it	is	natural	to	start	working	on	it	first.	

• Even	in	the	absence	of	deployed	open-source	hardware	components,	it	could	be	used	
by	members	of	the	public	to	“check”	the	scanning	done	by	the	interim	system,	provided	
the	digital	images	are	made	public.	

• The	open-source	software	OpenCount	might	go	a	long	way	towards	implementing	this	
component.	

	
For	the	Central	Ballot	Scanner:	
	

• This	is	probably	the	“easiest”	hardware	component	to	work	on	and	implement	first,	for	
reasons	that	will	be	described	below.	

• Deploying	this	component	alone	would	result	in	a	majority	of	votes	being	counted	by	
open-source	software.	For	example,	in	the	November	8,	2016	election	63%	of	ballots	
were	vote-by-mail	(263,091	out	of	414,528	ballots	in	all).	In	this	sense,	this	component	
provides	the	biggest	“bang	for	the	buck.”	

• This	component	doesn’t	require	answering	the	question	of	whether	to	use	vote	centers,	
since	vote-by-mail	ballots	need	to	be	tabulated	centrally	whether	or	not	San	Francisco	
moves	to	a	vote-center	model.	

• Unlike	precinct-based	hardware	components	like	the	accessible	voting	device	and	
precinct-based	scanners,	this	hardware	component	would	be	operated	in	a	more	
controlled	environment	with	more	highly	trained	staff.	As	a	result,	it	also	doesn't	need	
to	meet	the	same	portability,	durability,	usability,	and	transportation	requirements	as	
precinct-based	equipment	(which	also	might	require	a	custom	casing	or	shell	in	the	case	
of	precinct	equipment).	

• Also	unlike	precinct-based	hardware	components,	fewer	units	would	need	to	be	
purchased	or	manufactured,	so	it	is	probably	less	costly	and	expensive	to	do	this	step	
first.	For	example,	for	comparison,	San	Francisco	currently	has	four	high-speed	central	
scanners,	but	around	600	precincts.	

• Central	scanners	provide	multiple	possibilities	for	incremental	rollout,	including	using	
the	component	alongside	and	in	parallel	with	the	interim	system,	which	all	help	to	
mitigate	risk.	These	approaches	are	described	in	the	“Deployment	Strategy”	section.	

• Implementing	the	central	scanner	before	the	precinct	scanner	also	makes	sense	from	a	
software	dependency	perspective.	The	central	scanner	includes	most	of	the	software	
that	an	in-precinct	scanner	would	need	anyway,	like	ballot	interpretation,	
understanding	election	definition	and	ballot	layouts,	etc.	However,	the	central	scanner	
provides	a	safer	and	more	controlled	environment	in	which	to	exercise	these	code	paths	
for	the	first	time.	In	other	words,	with	the	exception	of	the	high-speed	and	high-volume	
nature	of	the	hardware,	it	is	a	strictly	simpler	component	than	the	precinct-based	
scanner.	

	
5.2.1.3.	Component	Details	
	
This	section	lists	more	details	about	each	of	the	four	components	we	suggested	above.	For	each	
of	these	deliverables,	we	provide—	
	

• A	rough	level	of	the	relative	complexity	(low	/	medium	/	high),	
• A	brief	description	(though	this	already	appears	for	the	most	part	in	the	Background	

section	of	this	document),	
• What	components	the	deliverable	interacts	with,	
• Possible	interfaces	/	data	formats	that	might	be	needed,	
• Sub-components,	

• Dependencies	from	a	project	management	perspective	(i.e.	what	might	be	needed	in	
advance),	and	

• Other	outcomes	/	deliverables	associated	with	delivering	the	component.	
	
	
5.2.1.3.1.	Results	Reporter	(Software)	
	
Complexity:	Low	
	
Description.	This	is	a	software-only	component	responsible	for	generating	human-readable	
reports	in	various	formats	from	structured	results	data.	
	
Interfaces	/	data	formats.	Needs	to	accept	as	input:	
	

• the	“election	definition”	data	(e.g.	contests,	candidates,	districts,	etc.).	
• the	vote	total	data	for	the	contests	as	a	whole	as	well	as	at	the	desired	aggregation	

levels	(e.g.	neighborhood,	precinct,	district,	election	day	vs.	vote-by-mail,	etc.),	
including	the	round-by-round	vote	totals	for	RCV	elections.	

	
Sub-components.	The	reporter	should	be	able	to	generate:	
	

• the	Statement	of	Vote	(e.g.	in	PDF	format),	
• tables	for	the	Election	Certification	letter	(e.g.	in	PDF	format),	
• HTML	pages	for	the	Department	website,	and	
• Possibly	also	reports	to	facilitate	the	public	observation	and	carrying	out	of	post-

Election	Day	audit	processes	(e.g.	vote	totals	divided	by	batch	or	precinct).	
	
Other	outcomes	/	deliverables.	The	required	input	data	and	formats	should	be	spelled	out.	
	
Possible	dependencies	/	pre-requisites.	Real	data	from	past	elections	for	proto-typing	and	
testing.		
	
	
5.2.1.3.2.	Vote	Totaler	(Software)	
	
Complexity:	Low	
	
Description.	This	is	a	software-only	component	responsible	for	aggregating	vote	data	and	
generating	election	results	in	a	machine-readable	format.	This	includes	running	the	RCV	
algorithm	to	generate	round-by-round	results.	
	
Interfaces	/	data	formats.	Needs	to	accept	as	input:	
	

• the	“election	definition”	data	(e.g.	contests,	candidates,	districts,	etc.).	
• cast	vote	records	(aka	CVR’s)	for	all	ballots.	

	
Sub-components.	
	

• the	code	responsible	for	running	the	RCV	algorithm	could	be	its	own	component.	
	
Other	outcomes	/	deliverables.	The	required	input	data	and	formats	should	be	spelled	out.	
	
Possible	dependencies	/	pre-requisites.	Real	data	from	past	elections	for	proto-typing	and	
testing.		
	
	
5.2.1.3.3.	Ballot	Image	Interpreter	(Software)	
	
Complexity:	Medium	
	
Description.	This	is	a	software-only	component	responsible	for	interpreting	ballot	images,	
namely	by	generating	a	cast	vote	record	(CVR)	given	a	digital	image	of	a	ballot.	The	component	
must	support	ballots	from	“third-parties”	(e.g.	the	interim	voting	system)	to	support	
incremental	roll-outs	like	pilot	and	hybrid	rollouts.	The	open-source	software	OpenCount	
developed	at	UC	Berkeley	could	be	a	foundation	for	this.	
	
Applicability.	This	component	can	possibly	be	used	in	the	following	components:	
	

• precinct	ballot	scanners	
• central	ballot	scanner	
• software	application	for	adjudicating	or	auditing	ballots	using	their	digital	images,	

independent	of	a	hardware	scanner.	
	
Interfaces	/	data	formats.	Needs	to	accept	as	input:	
	

• the	“election	definition”	data	(e.g.	contests,	candidates,	districts,	etc.).	
• the	“ballot	layout”	data	(e.g.	where	contests	are	located	on	each	ballot	card	for	each	

ballot	type,	etc.).		
	
Needs	to	output	for	each	ballot:	
	

• a	cast	vote	record	(CVR)	of	the	markings	on	the	ballot.	
	
Sub-components.	This	component	can	possibly	have	the	following	sub-component:	
	

• a	“contest-unaware”	interpreter	that	accepts	a	digital	image	of	a	ballot	and	ballot	layout	
data	and	outputs	what	markings	are	on	the	ballot	(e.g.	what	bubbles	are	filled	in,	
independent	of	their	contest	or	candidate	meaning).	

	
Other	outcomes	/	deliverables.	The	required	input	data	and	formats	should	be	spelled	out.	
	
Possible	dependencies	/	pre-requisites.	Real	data	from	past	elections	for	proto-typing	and	
testing.		
	
	
5.2.1.3.4.	Central	Ballot	Scanner	(Hardware	&	Software)	
	
Complexity:	High	
	
Description.	This	is	a	hardware	component	responsible	for	high-speed,	high-volume	ballot	
scanning	in	a	controlled	environment	under	staff	supervision	(e.g.	vote-by-mail	ballots).	It	
should	be	capable	of	(1)	exporting	CVR’s	and	digital	images	of	the	ballots	it	scans,	(2)	“out-
stacking”	ballots	that	require	manual	inspection	or	handling,	and	(3)	possibly	printing	unique	
identifiers	on	each	ballot	when	scanning	to	support	the	auditing	of	individual	ballots.	
	
Interfaces	/	data	formats.	
	

• Same	as	for	the	Ballot	Image	Interpreter.	
• Also	needs	to	store	digital	images	of	ballots	in	a	defined	image	format.	

	
Sub-components.	
	

• Device	drivers	(software	API’s	to	control	low-level	scanner	functionality	and,	if	present,	
the	printer).	

• Ballot	image	interpreter	(see	component	description	above).	
• High-level	software	to	orchestrate	calls	between	the	device	drivers	and	the	ballot	image	

interpreter.	
• Printer	component	to	print	unique	identifiers	(possibly	required).	

	
Other	outcomes	/	deliverables.	The	required	input	data	and	formats	should	be	spelled	out.	
	
Possible	dependencies	/	pre-requisites.	Real	data	from	past	elections	for	proto-typing	and	
testing.	Samples	of	ballots	from	past	elections	and/or	the	interim	voting	system.	
	
	
	

